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Abstract

We focus on the problem of finding patterns across two large, multidimensional datasets. For example, given
feature vectors of healthy and of non-healthy patients, we want to answer the following questions: Are the
two clouds of points separable? What is the smallest/largest pair-wise distance across the two datasets?
Which of the two clouds does a new point (feature vector) come from?
We propose a new tool, thetri-plot, and its generalization, thepq-plot, which help us answer the above
questions. We provide a set of rules on how to interpret a tri-plot, and we apply these rules on synthetic and
real datasets. We also show how to use our tool for classification, when traditional methods (nearest neighbor,
classification trees) may fail.
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1 Introduction and motivation

The automatic discovery of meaningful patterns and relationships hidden in vast repositories of raw infor-
mation has become an issue of great importance. Multimedia systems for satellite images, medical data
and banking information are some examples of prolific data sources. Many of these data are inherently
multi-dimensional. It is often difficult to summarize a large number of attributes by extracting a few essential
features. Moreover, many methods proposed in the literature suffer from thedimensionality curseand are im-
practical to apply directly. Thus, dealing efficiently with high-dimensional data is a challenge for researchers
in the database field [WSB98, BBK98]. Things become worse when more than one datasets are involved.

We propose a method for exploring the relationship between two multidimensional datasets, by summa-
rizing the information about their relative position. Our method requires only a single pass on the data and
scaleslinearly with the number of dimensions.

Problem definition Given two large multidimensional datasets, find rules about their relative placement in
space:

Q1 Do the datasets come from the same distribution?

Q2 Do they repel each other?

Q3 Are they close or far away?

Q4 Are they separable?

Q5 For a given, unlabelled point, which of the two sets does it come from (if any)?

In the following section, we will briefly discuss the related work on data mining techniques and describe
the datasets we used in our experiments. We then introduce the cross-cloud plots and explain their properties.
Based on these, we present a set of practical rules which allow us to analyze two clouds of points. Finally,
we describe the algorithm for generating the plots.

2 Related work

There has been a tremendous amount of work on data mining during the past years. Many techniques have
been developed that have allowed the discovery of various trends, relations and characteristics with large
amounts of data [JAG99, Cha98]. Detailed surveys can be found in [CHY96] and [GGR99]. Also, [Fay98]
contains an insightful discussion of the overall process of knowledge discovery in databases (KDD) as well
as a comprehensive overview of methods, problems, and their inherent characteristics.

In the field of spatial data mining [EKS99] much recent work has focused on clustering and the discov-
ery of local trends and characterizations. Scalable algorithms for extracting clusters from large collections
of spatial data are presented in [NH94] and [KN96]. The authors also combine this with the extraction of
characteristics based on non-spatial attributes by using both spatial dominant and non-spatial dominant ap-
proaches (depending on whether the cluster discovery is performed initially or on subsets derived using non-
spatial attributes). A general framework for discovering trends and characterizations among neighborhoods
of data-points is presented in [EFKS98]. This framework is built on top of a spatial DBMS and utilizes
neighborhood-relationship graphs which are traversed to perform a number of operations. Additionally, scal-
able clustering algorithms are included [AGGR98, TZ96, SCZ98, FRB98].

The work on fractals and box-counting plots is related: [BF95] used the correlation fractal dimension
of a dataset to estimate the selectivity of nearest-neighbor queries; [FSJT00] gave formulas for the selectiv-
ity of spatial joins across two point-sets. [BBKK97] analyze the performance of nearest-neighbor queries,
eventually using the fractal dimension. More remote work on fractals includes [PKF00], [JTWF00], [BC00].
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Dataset Description

Synthetic datasets
Line Points along a line segment, randomly chosen.
Circumference Points along a circle, randomly chosen.
Sierpinsky Randomly generated points from a Sierpinsky triangle (see fig. 7b).
Square Points on a 2D manifold, randomly generated.
Cube Points in a 3D manifold, randomly generated.
Super-cluster 256 uniformly distributed clusters, each with 7x7 points in a 2D manifold.

Real datasets
California Four two-dimensional sets of points (obtained from UCI) that refer to geographical

coordinates in California [oC89]. Each set corresponds to a feature: ‘streets’ (62,933
points), ‘railways’ (31,059 points), ‘political’ borders (46,850 points), and natural ‘wa-
ter’ systems (72,066 points).

Iris Three sets describing properties of the flower species of genus Iris. The points are
4-dimensional (sepal length, sepal width, petal length, petal width); the species are
‘virginica’, ‘versicolor’ and ‘setosa’ (50 points each). This is a well-known dataset in
the machine learning literature.

Galaxy Datasets from the SLOAN telescope:(x, y) coordinates, plus the class label. There are
82,277 in the ‘dev’ class (deVaucouleurs), and 70,405 in the ‘exp’ class (exponential).

LC Customer data from a large corporation (confidential). There were 20,000 records (be-
longing to two classes with 1,716 and 18,284 members each), each with 19 numeri-
cal/boolean attributes.

Votes Two 16-dimensional datasets from the 1984 United States Congressional Voting
Records Database: ‘democrat’ (267 entries) and ‘republican’ (168 entries).

Table 1: Description of datasets used for exposition and testing of our method.

Almost all of these papers use fast, linear (orO(N logN)) algorithms, based on thebox-countingmethod.
We also use a similar approach for our tri-plots.

Visualization techniques for large amounts of multidimensional data have also been developed. The work
described in [KK94] presents a visualization method which utilizes views of the data around reference points
and effectively reduces the amount of information to be displayed in a way that affects various characteristics
of the data (eg. shape and location of clusters, etc.) in a controlled manner.

There has also been significant work on data mining in non-spatial, multidimensional databases. Recent
work on a general framework that incorporates a number of algorithms is presented in [iHLN99]. The authors
introduce a general query language and demonstrate its application on the discovery of a large variety of
association rules which satisfy the anti-monotonicity property.

However, none of the above methods can answer all the questions,Q1 to Q5, which we posed in the
previous section. The method proposed in this paper can answer such questions. To find a solution for the
given problem, we move away from association rules and focus on the spatial relationships between two
multidimensional datasets.

2.1 Description of the data sets

We applied our method on several datasets, both synthetic and real. The former are used to build intuition,
and the latter to validate our techniques. The synthetic datasets are always normalized to a unit hypercube
and they may be translated, rotated and/or scaled in the experiments. The datasets are described in table 1.
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Symbol Definition

NA (orNB) No. of points in datasetA (orB)
Cross CrossA,B(r, 1, 1) plot between

datasetsA andB
Self A Self A(r, 1, 1) plot of datasetA
WA CrossA,B(r, 10, 1) cross-could plot

weighted on datasetA
WB CrossA,B(r, 1, 10) cross-could plot

weighted on datasetB
CA,i (CB,i) Count of typeA (B) points in thei-th cell
n No. of dimensions (embedding dimensionality)
D2 Correlation fractal dimension
r̂min Est. minimum distance between two points
r̂max Est. maximum distance between two points

Table 2: Symbols and definitions

3 Proposed method: cross-cloud plots

Our approach relies on a novel method that allows fast summarization of the distribution of distances between
points from two setsA andB. Table 2 presents the symbols used in this paper. Consider a grid with cells of
sider and letCA,i (CB,i) be the number of points from setA (B) in thei-th cell. The cell grid partitions the
minimum bounding box of both datasets. Thecross-functionCrossf A,B(r, p, q) is defined as follows:

Definition 1 Given two data setsA andB in the samen-dimensional space, we define the cross-function of
order (p, q) as

Crossf A,B(r, p, q) =
∑
i

CpA,i · C
q
B,i

Typically, we plot the cross-function in log-log scales, after some normalization. The normalization
factor scales the plot, maximizing the information presented:

Definition 2 Given two data setsA andB (withNA andNB points) in the samen-dimensional space, we
define the cross-cloud plot as the plot of

CrossA,B(r, p, q) =
log(NA ·NB)
log(Np

A ·N
q
B)
· log

(∑
i

CpA,iC
q
B,i

)
versuslog(r)

The cross-function has several desirable properties:

Property 1 For p = q = 1, the cross-function is proportional to the count ofA-B pairs within distancer.
That is,

CrossA,B(r, 1, 1) ∝ (# of pairs of points within distance≤ r)

Proof Using Schuster’s lemma [Sch88].
This is an important property. Forp = q = 1, the cross-cloud plot gives the cumulative distribution

function of the pairwise distances between the two “clouds”A andB [FSJT00]. Because of its importance,

3



we will usep = q = 1 as the default values. We will also omit the subscriptsA,B from the cross-cloud plot
when it is clear which datasets are involved. That is,

Cross(r) ∆= CrossA,B(r) ∆= CrossA,B(r, 1, 1)

Property 2 The cross-function includes the correlation integral as a special case when we apply it to the
same dataset (i.e.,A ≡ B).

Proof From the definition of correlation integral [Sch91].
The correlation integral gives the correlation fractal dimensionD2 of a datasetA, if it is self-similar.

Since the above property is very important, we shall give the self cross-cloud plots a special name:

Definition 3 The self-plot of a given datasetA is the plot of

Self A(r) = log
(∑

iCA,i · (CA,i − 1)
2

)
versuslog(r)

In order to avoid artifacts that self-pairs generate, self-plots do not count self-pairs, by definition. Moreover,
minor pairs (〈p1, p2〉 and〈p2, p1〉) are counted only once.

Property 3 If A is self similar, then the self-plot ofA is linear and its slope is its intrinsic dimensionality
(correlation fractal dimension,D2).

Proof See [BF95].
We are now ready to define our two main tools, the tri-plot and thepq-plot.

Definition 4 The tri-plot of two datasets,A andB, is the graph which contains the cross-plotCross(r) and
the normalized self-plots for each dataset (Self A(r) + log(NA/NB) andSelf B(r) + log(NB/NA)).

The normalization factors,log(NA/NB) andlog(NB/NA), perform only translation, preserving the steep-
ness of the graphs. In this paper, for every tri-plot we present the three graphs with the same color pattern:
the cross-plot is presented in blue lines with diamonds,Self A in green lines with crosses andSelf B in red
lines with squares. We also show the slope (orsteepness) of the fitted lines.

Definition 5 Thepq-plot of two datasets,A andB, is the graph of the three cross-cloud plots:CrossA,B(r),
CrossA,B(r, 1, k), andCrossA,B(r, k, 1) for large values ofk (k � 1).

Fig. 1 shows the tri-plot andpq-plot for the Line and Sierpinsky datasets. Notice that, although the
Cross() is almost always linear (fig. 1a), this is not necessarily true for theCross(r, 1, k) andCross(r, k, 1)
(in fig. 1b,k = 10).

Definition 6 The steepness of a plot is its slope, as determined by fitting a line with least-squares regression.

The tri-plots allow us to determine the relationship between the two datasets. If they are self-similar (ie. both
their self-plots are linear for a meaningful range of radii), their slopes can be used in the comparisons that
follow. However, the proposed analysis can be applied even to datasets which are not self-similar (ie. do
not have linear self-plots). Thus, we will in use the termssteepnessandsimilarity (as defined above). The
pq-plot is used in a further analysis step. Its use is more subtle and is discussed in section 4.3.
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Figure 1: Sierpinsky and Line datasets: (a) the tri-plot, (b) thepq-plot. The cross-plots are presented in blue
with diamonds, the self- and weighted-Sierpinsky plots in green with crosses, and the self- and weighted-Line
in red with squares.

3.1 Anatomy of the proposed plots

This section shows how to “read” the cross-cloud plots and take advantage of the tri- andpq-plots, without
any extra calculations on the datasets.

3.1.1 Properties of the self-plots

Property 4 The first radius for which the count-of-pairs is not zero in the self-plot provides an accurate
estimate,̂rmin , of the minimum distance between any two points.

Property 5 Similarly, the radius up to which the count-of-pair increases (being constant for larger radii)
provides an accurate estimate,r̂max , of the maximum distance between any two points. We also refer to this
distance as thedataset diameter.

Fig. 2 illustrates the above properties. The lower row of fig. 2a shows a line with 15,000 points. Its self-plot
is linear. The slope, which isD2, is equal to 1, as expected (since this is the intrinsic dimensionality of a
line). Ther̂min andr̂max estimates are also indicated.

Property 6 If the dataset consists of clusters, the self-plot has a plateau from radiusr̂min to r̂max (see fig. 2).

Whenever the self-plot is piecewise linear, the dataset has characteristic scales. Plateaus are of particular
interest; these occur when the dataset is not homogeneous. From the endpoints of the plateau, we can
accurately estimate the maximum cluster diameter,r̂cdmax , and characteristic separation between clusters,
r̂sepc . This occurs in the self-plot of the Super-cluster dataset (fig. 2b).

3.1.2 Properties of the cross-cloud plot

Fig. 3 presents an example of a tri-plot, where datasetA is a randomly generated set of 6,000 points from
a line (y = x0/x, y ∈ [0, 1]), and datasetB is a Sierpinsky triangle with 6,561 points. These two datasets
where chosen to highlight some interesting plot properties. These are discussed in the following (see also
fig. 3).

Property 7 The minimum distance between the datasets can be accurately estimated as the smallest radius
which has a non-zero value in the cross-cloud function.
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Figure 2: Measurements obtained from self-plots: (a) Line, and (b) Super-cluster datasets.

Property 8 Similarly, the maximum distance between the datasets (or, the maximum surrounding diameter)
can be accurately estimated as the greatest radius before the plot turns flat.

Property 9 Whenever the cross-cloud plot has a flat part for very small radii, there are duplicate points
across both datasets.

All the previous estimates can be obtained with asingleprocessing pass over both datasets to count grid
occupancies,withoutexplicitly computing any distances.

Property 10 The steepness of the cross-cloud plot is always greater than or equal to that of the steepest
self-plot.

4 Practical usage – Cloud mining

Before presenting our main analysis process, we need to define some terms:

Definition 7 Theshapeof a dataset refers to its formation law (eg. “line,” “square,” “sierpinsky”).

Definition 8 Two datasets arecollocatedif they have (highly) overlapping minimum bounding boxes.

Definition 9 Theplacementof a dataset refers to its position and orientation.

We use these three terms when comparing two datasets. Two datasets can have the same shape but different
placement (eg. two non-collinear lines). Two datasets have the same shape but different placement, if the
one can be obtained from the other throughaffinetransformations. Also, two datasets with the same intrinsic
dimensionality can have different shapes (eg. a line and a circle – both haveD2 = 1).
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Figure 3: Example of a tri-plot indicating where to find meaningful information. The cross-plot is always in
blue with diamonds,Self A in green with crosses andSelf B in red with squares.

4.1 Rules for tri-plot analysis

In this section we present rules (see table 3 for a summary) to analyze and classify the relationship between
two datasets. From the tri-plots we can get information about the intrinsic structure and the global relationship
between the datasets.

Rule 1 (identical) If both datasets are identical, then all plots of a tri-plot are similar (Self A ≈ Self B ≈
Cross). In this case, the three graphs will be on top of each other. This means that the intrinsic dimensionality,
shape as well as placement of both datasets are the same. This may be because one dataset is a subset of the
other, or both are samples from a bigger one. Fig. 4 shows the tri-plots for (a) two lines with different number
of objects, (b) two Sierpinsky triangles, and (c) two coplanar squares in 3D. All datasets in fig. 4 are in a 2D
manifold. In all these examples, both datasets have the same shape and placement but different number of
points.

Rule 2 (same shape, different placement) If both datasets have the same intrinsic dimensionality, but
different placement, then their steepness is similar (Self A ≈ Self B), but Cross is only moderately steeper
than both. Further analysis using thepq-plot can indicate whether the datasets are separable or not and, if
separable, to what extent. Examples are intersecting lines, intersecting planes, or two Sierpinsky datasets
with one rotated over the other (see fig. 5a, 5b and 5c, respectively).
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Rule Situation Condition Example

A andB are similar (Self A andSelf B have
same steepness),and

1 DatasetsA and B are statisti-
cally identical

Cross, Self A and Self B have the same
steepness

Figure 4

2 Both datasets have the same in-
trinsic dimensionality

Cross has steepness comparable to that of
Self A andSelf B

Figure 5

3 The datasets are disjoint Cross is much steeper than bothSelf A and
Self B

Figure 6

A andB are not similar (Self A andSelf B
have different steepness),and

4 The (less steep) dataset is a
proper subset of the other

Cross and Self A or Self B have the same
steepness

Figure 7

5 The datasets are collocated Cross has steepness comparable to that of
Self A andSelf B

Figure 8

3 Cross is much steeper than both
Self A andSelf B

The datasets are disjoint Figure 6

Table 3: Conditions and rules used in tri-plot analysis.

Rule 3 (disjoint datasets) If the datasets are disjoint, thenCross is much steeper than bothSelf A and
Self B (does not matter whether the latter are similar or not). For two intersecting datasets, theCross steep-
ness will not be so far from the steepness of their self-plots. However, if theCross is much steeper than both
Self A andSelf B, it means that the minimum distance between points from the datasets is bigger than the
average distance of the nearest neighbors of points in both datasets, so the datasets are disjoint. In fact, this
case leads to the conclusion that both datasets are well-defined clusters, hence they should be separable by
traditional clustering techniques. Examples of this situation are non-intersecting lines, squares far apart, or
a Sierpinsky triangle and a plane which is not coplanar with the Sierpinsky’s supporting plane (see fig. 6a
to 6c). All datasets are in 3D space. Notice that the self-plots have the expected slopes, but the cross-plots
have very high steepness (18, 13 and 26 respectively).
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Figure 5: Rule 2 – The two datasets have the same intrinsic dimensionality, but different placements: (a) Two
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Rule 4 (sub-manifold) Without loss of generality, letSelf A be the steepest ofSelf A andSelf B. If dataset
B is a sub-manifold of datasetA, the self-plots do not have similar steepness (Self A 6≈ Self B) and theCross
is equal toSelf A. Remember that the steepness of theCross cannot be smaller than the steepness ofSelf A or
Self B. Therefore, if the steepness of theCross is similar to one of the self steepnesses (eg.Cross ≈ Self A),
then the other graph (in this caseSelf B) will be less steep thanCross. This means that the points in dataset
B have a stronger correlation than the points in datasetA. Rule 1 deals with the situation where both datasets
are subsets of a larger one, or one is a subset of another, but there is no rule to extract the subsets. Rule 4
deals with the same case of occurrence of subsets, but here there are rules to choose points that pertain to the
dataset with a smoother self-plot. Examples of this case are a line embedded in a plane, a Sierpinsky dataset
and its supporting plane, and a square embedded in a volume (see fig. 7a, 7b and 7c, respectively).

Rule 5 (collocated) If both datasets have different shape, placement and intrinsic dimensionality, then
Self A 6≈ Self B and theCross is only moderately steeper thanSelf A andSelf B. In this case, the datasets are
not related to each other. They are, however, collocated, or at least intersecting. This means that although part
of the datasets may be separable, this would not be true for the entire dataset, or for both datasets. Whenever
this situation occurs, it should be further analyzed, for example, using thepq-plot. These are the cases of
a line with a Sierpinsky triangle, a line piercing a square, and a Sierpinsky intersecting a square, as fig. 8
shows.

4.2 Application to real datasets

In the previous section we described the rules, using synthetic datasets to build intuition. Here we apply them
to real datasets (see fig. 9).
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Figure 6: Rule 3 – The two datasets are disjoint: (a) two non-intersecting lines, (b) two non-intersecting
squares, (c) a square and a Sierpinsky triangle. The upper row shows the tri-plots with the axes in log-log
scale. The lower row shows the corresponding datasets in 3D space.

Rule 1 (identical) There are four pairs of datasets which conform this rule: two different subsets of
California-political (fig. 9a), the two galaxy datasets (forlog r ∈ [−4, 4] – fig. 9b), Iris-versicolor and Iris-
virginica (fig. 9c), and two different subsets of California-water (fig. 9d).

Rule 3 (disjoint datasets) The Iris-Versicolor and Iris-Setosa pair (fig. 9e), and the Democrat and Repub-
lican pair (fig. 9f) conform to this rule. Their cross-plot is much steeper than their self-plots. Versicolor and
Setosa species are indeed apart. Also, the Democrat and Republican parties have distinct behavior, which
allows separation of their members. Thus, we conclude that these dataset pairs can be separated and we can
estimate the minimum distance between them (see property 7).

Rule 4 (sub-manifold) Fig. 9g shows the tri-plot of California-water and California-political. Recall that
the dataset with smaller steepness is probably a proper sub-manifold of the one with larger steepness (or
of the superset from which both are samples). We thus conclude that California-political is a subset of
California-water. This makes sense, since many political divisions are along water paths.

Rule 5 (collocated) According to fig. 9h, California-railroad and California-political agree with Rule 5.
This is reasonable, since railroads are built with objectives irrelevant to political divisions. Also, the LC
datasets agree with Rule 5 and require further analysis. The flat parts in fig. 9i and in the political self-plot
(fig. 9h) indicate that these datasets possibly have duplicate (or near-duplicate) points. The Galaxy datasets
(fig. 9bb) demonstrate the case of clusters, which are present at two characteristic distances. Also, the datasets
repel each other for radii close to the cluster diameter. After analyzing the relationship between two datasets
using tri-plots, more information can be obtained from thepq-plots.
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Figure 7: Rule 4 – One dataset is a proper subset of the other dataset: (a) a square overlapping a line in
2D space, (b) a Sierpinsky triangle and its supporting plane in 2D space, (c) a volume travesed by a plane
in 3D space. The upper row shows the tri-plots in log-log scale. The lower row shows the datasets in their
respective spaces.

4.3 Analysis of thepq-plot

The pq-plot allows us to further examine the relationship between two datasets, by weighting one dataset
when comparing its distance distribution with that of the other dataset. The analysis of thepq-plots is directed
to specific ranges of the cross-cloud plots, in contrast to the more global analysis of the tri-plots.

Even if aCrossA,B(r, p, q) plot with p 6= 1 6= q happens to be a line, its slope has no meaning; only its
overall shape has useful properties. Also, due to the normalization bylog(NA · NB)/ log(Np

A · N
p
B), both

the leftmost and rightmost points in allpq-plots coincide. According to equation 1, if a particularCA,i (or
CB,i) in the calculation ofCrossA,B(r, p, q) is zero for a given radiusr in a given region of the space, the
correspondingCB,i (orCA,i) will not contribute to the total for this particular radius. The result will be a flat
region in this part of the curve. Otherwise, if there is a regular distribution of distances over a continuous
part of the curve, the resulting curve will exhibit a linear shape. Sudden rises in a plot indicate a large growth
of counts starting at that radius. Hence, the two shapes in the curves of the cross-cloud plots that are worth
looking for are: the linear parts, and the regions where the curves are flat.

The cross-cloud plots,CrossA,B(r, k, 1), andCrossA,B(r, 1, k) with k � 1 (which we have namedWA

andWB because they are ‘weighted’), can be generated for any value ofk. However, increasingk only
increases the distortions on the plot, without giving any extra information. Thus, we pickedk = 10. Each
conclusion is valid for the range of radii which presents specific behavior. Next, we discuss two representative
situations, using pairs of synthetic datasets and comparing the obtained tri-plots andpq-plots.

Fig. 10 compares two pairs of datasets: circumference-circumference and line-circumference. This il-
lustrates the situation stated by Rule 2: the two datasets are similar (Self A ≈ Self B andCross steepness
is less or equal than the steepness ofSelf A plus the steepness ofSelf B). By looking only at the tri-plots
in fig. 10a and 10d, it is not possible to say anything else about the datasets. However, in fig. 10b the three
graphs are on top of each other. This means that both datasets have the same behavior under weighted cal-
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Figure 8: Rule 5 – The datasets come from different placements: (a) a line and a Sierpinsky triangle in 2D
space, (b) a line piercing a square in 3D space, (c) a plane and an intersecting Sierpinsky triangle in 3D space.
The upper row shows the tri-plots in log-log scale. The lower row shows the corresponding datasets in their
respective space.

culation (Cross(r, 1, 10) andCross(r, 10, 1)). Thus, both datasets have the same shape. On the other hand,
the behavior of thepq-plot in fig. 10e shows that the datasets have different shapes, as well as how they are
correlated within specific radii ranges (Region I and II on the plots).

In this section we proposed the rules to analyze the tri-plots and thepq-plots using easily understandable
synthetic datasets in 2D and 3D spaces. However, the same conclusions should apply for real datasets in
any multi-dimensional space. In fact, for real datasets it is usually difficult to know how to describe the
relationship between the attributes and to know if they are correlated. Nonetheless, our proposed analysis
can indicate not only the existence of correlations, but also how “tight” they are. This analysis can also
provide evidence of how separable the datasets are, as well as if it is possible to classify points as belonging
to one or to the other dataset.

4.4 Usingpq-plots to analyze datasets

Due to space limitations, we presentpq-plots only for some of the real datasets(fig. 11). Fig. 11a shows the
pq-plot for the Galaxy datasets. For the highlighted range, there is a distinct separation between the datasets.
Besides confirming that the two galaxy types indeed repel each other, thepq-plots show that there are few
clusters consisting only of ‘exp’ galaxies (although there are clusters including points of both datasets also
only with ‘dev’ points). Outside the highlighted range, the sets are almost identical. As expected, fig. 11b
confirms that the Democrat and Republican datasets are separable, since the weighted plots have completely
opposite behaviors.

Fig. 11c shows thepq-plot of the California-water and California-political datasets. In this plot, there
are four ranges with distinct behaviors. Range I corresponds to very small distances, so these distances are
probably less than the resolution of the measurements; therefore they are not meaningful. Ranges II and III
are where the real distances are meaningful. The sudden fall to the left of the wWater-plot in range II means
that there are very few points in the political dataset at distances below this range from points in the water
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Figure 9: Tri-plots of real datasets and their classification as obtained from rules 1-5.

dataset. This indicates a kind of “repulsion” of points from both datasets for these small distances. In range
III, both datasets have approximately the same behavior. Range IV is almost flat for all plots, meaning that
there are almost no more pairs within this distance range. In fact, the “almost flat” part of the graph is due to
a few outliers in the dataset.

4.5 Membership testing and classification

So far we have shown how to use the tri-plots to answer questionsQ1-Q5. In this section we illustrate the
power of cross-cloud plots in another setting: membership testing and classification (Q5). Fig. 12 illustrates
the following situation: We have two datasets,A (20 points along a line) andB (900 points in a ‘tight’
square). A new point (indicated by ‘?’) arrives. Which set, if any, does it belong to?

Visually, the new point (‘?’) should belong to the Line20 set. However, nearest neighbors or decision-tree
classifiers would put it into the square: the new point has∼ 900 ‘Square’ neighbors, before even the first
‘Line20’ neighbor comes along!

We propose a method that exploits cross-cloud plots to correctly classify the new point (‘?’). The new
point is treated as a singleton dataset and its cross-plots are compared to the self-plots of each candidate set.
In this particular case, we compare the steepness ofCrossLine,Point andCrossSquare,Point to the steepness
of Self Line andSelf Square and classify the new point accordingly. Notice that the plots in fig. 12b are more
similar to each other (almost equal steepness), while the plots in fig. 12c are clearly not similar. Thus, we
conclude that the new point (‘?’) belongs to the Line20 dataset, despite whatk-nearset neighbor classification
would say!
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Figure 10:pq-plots for two pairs of datasets: (a) the tri-plot of two intersecting circumferences (as shown
in (c)), (b) thepq-plot of the two circumferences, (d) the tri-plot of a line intersecting a circumference (as
shown in (f)), and (e) thepq-plot of the line and the circumference.

The full details of the classification method are the topic of ongoing research. This is yet another appli-
cation of the cross-cloud technique.

5 Implementation

To obtain the required tri-plots, we use the single-pass algorithm presented in appendix A. This is based on
box-counting and is an extension of [BF95, FSJT00].

What is important is that this algorithm scales up for arbitrarily large datasets, and arbitrarily high dimen-
sions. This is rarely true for other spatial data mining methods in the literature. The algorithm to generate the
pq-plots is very similar to the algorithm in appendix A, except we constructWA andWB (instead ofSelf A
andSelf B) plots.

5.1 Scalability

The algorithm is linear on the total number of points, ie.O(NA + NB). If we want l points in each cross-
cloud plot (ie. number of grid sizes), then the complexity of our algorithm isO((NB + NA) · l · n), where
n is the embedding dimensionality. Fig. 13 shows the wall-clock time required to process datasets on a
Pentium II machine running NT4.0. The datasets on the left graph have varying numbers of points in 2, 8
and 16-dimensional spaces, and we used 20 grids for each dataset. For the right graph, we used datasets with
100,000, 200,000 and 300,000 points and dimensions 2 to 40. The execution time is indeed linear on the
total number of points, as well as on the dimensionality of the datasets. The algorithm does not suffer from
thedimensionality curse.

Notice that steps 1 and 2 of the algorithm read the datasets and maintain counts of each non-empty grid
cell. These counts can be kept in any data structure (hash tables, quadtrees, etc).
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Figure 11: pq-plots for real datasets: (a) Galaxy, (b) Democrat and Republican, (c) California-water and
California-political. The upper row shows the tri-plots and the lower row the correspondingpq-plots. The
axes are in log-log scales.

6 Conclusions

We have proposed the cross-cloud plot, a new tool for spatial data mining across twon-dimensional datasets.
We have shown that our tool has all the necessary properties:

• It can spot whether two clouds are disjoint (separable), statistically identical, repelling, or in-between.
That is, it can answer questionsQ1 to Q4 from section 1.

• It can be used for classification and is capable of “learning” a shape/cloud, where traditional classifiers
fail to do so (ie. it can answer questionQ5).

• It is very fast and scalable: We use a box-counting algorithm, which requires a single pass over each
dataset, and the memory requirement is proportional to the number F of non-empty grid cells and to
the numberl of grid sizes requested (1 ≤ F ≤ NA +NB, and clearly not exploding exponentially).
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Figure 13: Left – Wall-clock time (in seconds) needed to generate the tri-plots for varyingly sized datasets.
The blue graph represents the time for 2D datasets, the green graph for 8D datasets and the red graph for 16D
datasets. Right – Wall-clock time (in seconds) needed to generate the Tri-plots versus the dimensionality of
the datasets, for three different dataset sizes (100,000, 200,000 and 300,000).

• Tri-plots can be applied to high-dimensional datasets easily, because the algorithms scale linearly with
the number of dimensions.

The experiments on real datasets show that our tool finds patterns that no other known method can. We
believe that our cross-cloud plot is a powerful tool for spatial data mining and that we have just seen only the
beginning of its potential uses.
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Algorithm: Fast tri-plot
Inputs: Two datasets,A andB (with NA andNB points respectively) normalized to

the unit hyper-cube, and the numberl of desired points in each plot.
Output: Tri-plot

Begin
1 - For each pointa of datasetA:

For each grid sizer = 1/2j , j = 1, 2, . . . , l:
Decide which grid cell it falls in (say, thei-th cell)
Increment the countCA,i

2 - For each pointb of datasetB:
For each grid sizer = 1/2j , j = 1, 2, . . . , l:

Decide which grid cell it falls in (say, thei-th cell)
Increment the countCB,i

3 - Compute the sum of product occupancies for the functions:
Self A(r) = log

(
1
2

∑
iCA,i · (CA,i − 1)

)
,

Self B(r) = log
(

1
2

∑
iCB,i · (CB,i − 1)

)
,

CrossA,B(r) = log (
∑

iCA,i · CB,i)

4 - Print the tri-plot:
for r = 1/2j , j = 1, 2, . . . , l:

Print CrossA,B(r)
Print Self A normalized:Self A(r) + log(NB/NA)
Print Self B normalized:Self B(r) + log(NA/NB)

End

Figure 14: Algorithm
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A Algorithm

Given two datasetsA andB (with cardinalitiesNA andNB) in an-dimensional space, we generate the tri-
plot (ie.CrossA,B, Self A andSelf B plots) using the algorithm shown in Figure 14. Note that the numberF
of non-empty cells in each grid does not depend on the dimensionalityn. In fact,1 ≤ F ≤ NA +NB.
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